中考數學備考指導之數學知識口訣總結 1
首先記住30度、45度、60度的正弦值、余弦值的分母都是2,正切、余切的'分母都是3,分子記口訣“123,321,三九二十七”既可.
三角函數的增減性:正增余減
3.平行四邊形的判定:
要證平行四邊形,兩個條件才能行,
一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行.
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成.
4.梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現;
延長兩腰交一點,“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線.
5.添加輔助線歌:
輔助線,怎么添?找出規律是關鍵.
題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連;
三角形邊兩中點,連接則成中位線;
三角形中有中線,延長中線翻一番
中考數學備考指導之數學知識口訣總結實用一篇擴展閱讀
中考數學備考指導之數學知識口訣總結實用一篇(擴展1)
——中考數學知識點口訣(1)份
中考數學知識點口訣 1
函數
合并同類項,法則不能忘,只求系數和,字母、指數不變樣。
恒等變換
兩個數字來相減,互換位置最常見,**只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方
完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放**;首±尾括號帶平方,尾項符號隨**。
因式分解
一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
“代入”口決
挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小—中—大)。
單項式運算
加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。
一元一次不等式解題的一般步驟
去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。
一元一次不等式組的解集
**取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運算法則
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。
分式方程的解法步驟
同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。
最簡根式的條件
最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。
特殊點坐標特征
坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。
象限角的平分線
象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線
平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。
對稱點坐標
對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
自變量的.取值范圍
分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。
函數圖像的移動規律
若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。
一次函數圖像與性質口訣
一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。
中考數學備考指導之數學知識口訣總結實用一篇(擴展2)
——中考數學知識考點的口訣實用一份
中考數學知識考點的口訣 1
1、反比例函數圖像與性質口訣:
反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。
巧記三角函數定義:初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數的增減性:正增余減。
特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數字巧記:`sqrt2=1.414`(意思意思而已)`sqrt3=1.7321`(三人一起商量)`sqrt5=2.236`(吾量量山路)`sqrt6=2.449`(糧食是酒)`sqrt7=2.645`(二流是我)`sqrt8=2.828`(二爸二爸)`sqrt10=3.16`(山藥,六兩)
平行四邊形的`判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現;延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。
2、方程解法口訣
分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。
特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。
象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。
對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。
函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成`y=a(x+h)^2+k`的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。
一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。
二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
3、一元一次不等式組的解集口訣
有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。
合并同類項:合并同類項,法則不能忘,只求系數和,字母、指數不變樣。
去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。
恒等變換:兩個數字來相減,互換位置最常見,**只看其指數,奇數變號偶不變。`(a-b)^(2n+1)=-(b-a)^(2n+1)`與`(a-b)^(2n)=(b-a)^(2n)`
平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放**;首±尾括號帶平方,尾項符號隨**。
因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
“代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小?D中?D大)
單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。
一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。
一元一次不等式組的解集:**取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
中考數學備考指導之數學知識口訣總結實用一篇(擴展3)
——數學知識中考復習口訣(1)份
數學知識中考復習口訣 1
首先記住30度、45度、60度的正弦值、余弦值的'分母都是2,
正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
三角函數的增減性:正增余減
2.平行四邊形的判定:
要證平行四邊形,兩個條件才能行,
一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
3.梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現;
延長兩腰交一點,“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
4.添加輔助線歌:
輔助線,怎么添?找出規律是關鍵。
題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連;
三角形邊兩中點,連接則成中位線;
三角形中有中線,延長中線翻一番。
中考數學備考指導之數學知識口訣總結實用一篇(擴展4)
——中考數學知識點總結5篇
中考數學知識點總結1
一、初中數學基本知識
㈠、數與代數
A、數與式:
1、有理數
有理數:①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數
無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AMAN=A(MN)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:
①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
20xx年中考數學基礎知識總結20xx年中考數學基礎知識總結
B、方程與不等式
1、方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△
2、不等式與不等式組
不等式:
①用符號〉,=,〈號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,AC>BC
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C
如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立;
二、函數
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:①若兩個變量X,間的關系式可以表示成=XB(B為常數,不等于0)的形式,則稱是X的一次函數。②當B=0時,稱是X的正比例函數。
一次函數的圖象:①把一個函數的自變量X與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數=X的圖象是經過原點的一條直線。③在一次函數中,當〈0,B〈O,則經234象限;當〈0,B〉0時,則經124象限;當〉0,B〈0時,則經134象限;當〉0,B〉0時,則經123象限。④當〉0時,的值隨X值的增大而增大,當X〈0時,的值隨X值的增大而減少。
三、空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
20xx年中考數學基礎知識總結建造師考試_建筑工程類工程師考試網
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的.平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
中考數學知識點總結2
第一單元 位置與方向
1、 生活空間中的八個方向:東、東南、南、西南、西、西北、北、東北
2、 地圖通常都是按上北下南左西右東繪制的。
3、 東與西相對。南與北相對。
4、 觀測點不同,同一物體所在的位置可能會不同。
5、 描述行走路線時,要說明方向與距離。
第二單元 除數是一位數的除法
1、 除法的驗算:商×除數=被除數
有余數除法的驗算:商×除數+余數=被除數
2、 0除以任何不是0的數都得0。
3、 0不可以作除數。
4、 除法的估算方法是多樣的,通常我們將被除數(三位數)看成一個接近它的整百整十數,除數(一位數)不變,然后計算。或者按照乘法口訣把被除數估成一個合適的數,再計算。
5、 除數是一位數的除法法則:
①從被除數的最高位除起,如果被除數的百位比除數小,再用前兩位數一起去除。
②除到被除數的哪一位,就把商寫在哪一位上面。
③每求出一位商,余下的數必須比除數小。
第三單元 統計
1、 平均數:就是一組數據的和除以這組數據的個數所得的商。
2、 平均數=總數量÷總份數。
3、 一個格是表示1個單位還是2個、5個、10個甚至更多單位,要根據數據的具體大小而定。
4、 平均數能較好地反映一組數據的總體情況。
第四單元 年月日
1、 一年有12個月。一月、三月、五月、七月、八月、十月、十二月每月有31天,稱為大月;四月、六月、九月、十一月每月30天,稱為小月。
2、 兒歌:一三五七八十臘,三十一天永不差;四六九冬三十天,平年二月二十八;每隔四年閏一日,閏年二月把一加。
3、平年二月28天,全年365天;閏年二月29天,全年366天。
4、 平年或閏年的判斷方法:公歷年份是4的倍數的一般都是閏年;公歷年份是整百數的,必須是400的倍數才是閏年。
5、 24時計時法:在一日(天)里,鐘表上時針正好走兩圈,共24小時。所以經常采用從0時到24時的計時法,通常叫做24時計時法。
6、 經過時間:可以通過觀察鐘面和用線段表示來計算出簡單的經過時間。
第五單元 兩位數乘兩位數
1、 口算整十數乘整百數的方法:
(1)將整十數十位上的數與整百數百位上的數相乘。
(2)在乘得的積的末尾添三個0。
2、 兩位數乘整百數的口算方法:
(1)用兩位數乘整百數百位上的數。
(2)在乘得的積的末尾添上兩個0。
3、兩位數乘兩位數的估算方法:
(1)將兩個或兩位數分別看成接近它們的整十數或整百數(一百)。
(2)再將兩個整十數或整百數相乘。
4、 兩位數乘兩位數的筆算方法(不進位):
(1)先用第二個因數個位上的數與第一個因數相乘,再用第二個因數十位上的數與第一個因數相乘,所得的積食表示多少個十,所以末位數要寫在十位上。
(2)將乘得的積加起來求出兩位數乘兩位數的積。
5、 兩位數乘兩位數的筆算方法(進位):
(1)先用第二個因數個位上的數與第一個因數相乘,再用第二個因數十位上的數與第一個因數相乘,這一步乘得的積表示多少個十,所以末位數應在十位上。哪一位相乘的積滿十就向前一位進1。
(2)將兩次乘得的積相加就是兩位數乘兩位數的積。
第六單元 面積
1、 面積:物體表面或封閉圖形的大小,就是它們的面積。
2、 常用的面積單位:平方厘米、平方分米、平方米等。
3、 邊長1厘米的正方形,面積是1平方厘米;
邊長1分米的正方形,面積是1平方分米;
邊長1米的正方形,面積是1平方米。
4、 1平方米=100平方分米; 1平方分米=100平方厘米;
1平方米=10000平方厘米;
5、測量土地的面積時,常常要用到更大的面積單位:公頃,平方千米
邊長是100米的正方形,面積是1公頃。
邊長是1千米的正方形,面積是1平方千米
6、 1平方千米=100公頃 1公頃=10000平方米;
7、 長方形的面積=長×寬;正方形的.面積=邊長×邊長。
第七單元 小數的初步認識
1、 以米為單位的小數的含義:
(1)小數點左邊的數表示多少米。
(2)小數點右邊的數依次表示幾分米、幾厘米。
2、 以元為單位的小數的含義:
(1)幾元就在小數點的左邊寫幾。
(2)幾角就在小數點右邊第一位上寫幾,幾分就在小數點右邊第二位上寫幾,哪個數位上一個單位也沒有,就在那個數位上寫“0”占位,最后寫上單位名稱“元”。
3、 小數大小的比較方法:
(1)先比較小數點左邊的部分(整數部分),這部分數大的這個小數就大。
(2)如果整數部分大小相同,就看小數點右邊第一位上的數,這個數位上的數大這個小數就大。
(3)如果小數點右邊第一位上的數也相同,就看小數點右邊第二位上的數,以此類推。
4、 用豎式計算小數的加法(一位小數):
(1)兩個加數的相同數位一定要對齊(小數點對齊)。
(2)先將小數點右邊第一位上的數相加,滿十進一。
(3)和的小數點要和兩個加數的小數點對齊。
(4)再將小數點左邊的數相加,這部分數按整數的加法來加。
5、 用豎式計算一位小數減法的方法:
(1)被減數和減數的相同數位要對齊(小數點對齊)。
(2)從小數點右邊第一位開始減起(從右到左),不夠減時從前一位退一當十再減。
(3)差的小數點要和被減數、減數的小數點對齊。
第八單元 解決問題
1、 分析題中的數量關系,明確先求什么,再求什么。
2、 每份個數×份數=總數(也就是求幾個幾是多少用乘法計算)。
總數÷每份個數=份數 總數÷份數=每份個數
3、 含有乘、除法的綜合算式從左往右計算。
4、 含有乘法(除法)、加法(減法)的綜合算式,先算乘(除)法再算加(減)法。
第九單元 數學廣角
1、 集合:在數學中,集合是指某一類事物組成的整體。
2、 等量代換:是指一個量用與它相等的量去代替。
3、 計算兩個隊的***,不能簡單地將兩個隊的人數相加,要將重復的人數從總數中減去。
中考數學知識點總結3
第一單元 位置與方向
1、 生活空間中的八個方向:東、東南、南、西南、西、西北、北、東北
2、 地圖通常都是按上北下南左西右東繪制的。
3、 東與西相對。南與北相對。
4、 觀測點不同,同一物體所在的位置可能會不同。
5、 描述行走路線時,要說明方向與距離。
第二單元 除數是一位數的除法
1、 除法的驗算:商×除數=被除數
有余數除法的驗算:商×除數+余數=被除數
2、 0除以任何不是0的數都得0。
3、 0不可以作除數。
4、 除法的估算方法是多樣的,通常我們將被除數(三位數)看成一個接近它的整百整十數,除數(一位數)不變,然后計算。或者按照乘法口訣把被除數估成一個合適的數,再計算。
5、 除數是一位數的除法法則:
①從被除數的最高位除起,如果被除數的百位比除數小,再用前兩位數一起去除。
②除到被除數的哪一位,就把商寫在哪一位上面。
③每求出一位商,余下的數必須比除數小。
第三單元 統計
1、 平均數:就是一組數據的和除以這組數據的個數所得的商。
2、 平均數=總數量÷總份數。
3、 一個格是表示1個單位還是2個、5個、10個甚至更多單位,要根據數據的具體大小而定。
4、 平均數能較好地反映一組數據的總體情況。
第四單元 年月日
1、 一年有12個月。一月、三月、五月、七月、八月、十月、十二月每月有31天,稱為大月;四月、六月、九月、十一月每月30天,稱為小月。
2、 兒歌:一三五七八十臘,三十一天永不差;四六九冬三十天,平年二月二十八;每隔四年閏一日,閏年二月把一加。
3、平年二月28天,全年365天;閏年二月29天,全年366天。
4、 平年或閏年的判斷方法:公歷年份是4的倍數的一般都是閏年;公歷年份是整百數的,必須是400的倍數才是閏年。
5、 24時計時法:在一日(天)里,鐘表上時針正好走兩圈,共24小時。所以經常采用從0時到24時的計時法,通常叫做24時計時法。
6、 經過時間:可以通過觀察鐘面和用線段表示來計算出簡單的經過時間。
第五單元 兩位數乘兩位數
1、 口算整十數乘整百數的方法:
(1)將整十數十位上的數與整百數百位上的數相乘。
(2)在乘得的積的末尾添三個0。
2、 兩位數乘整百數的口算方法:
(1)用兩位數乘整百數百位上的數。
(2)在乘得的積的末尾添上兩個0。
3、兩位數乘兩位數的估算方法:
(1)將兩個或兩位數分別看成接近它們的整十數或整百數(一百)。
(2)再將兩個整十數或整百數相乘。
4、 兩位數乘兩位數的筆算方法(不進位):
(1)先用第二個因數個位上的數與第一個因數相乘,再用第二個因數十位上的數與第一個因數相乘,所得的積食表示多少個十,所以末位數要寫在十位上。
(2)將乘得的積加起來求出兩位數乘兩位數的積。
5、 兩位數乘兩位數的筆算方法(進位):
(1)先用第二個因數個位上的數與第一個因數相乘,再用第二個因數十位上的數與第一個因數相乘,這一步乘得的積表示多少個十,所以末位數應在十位上。哪一位相乘的積滿十就向前一位進1。
(2)將兩次乘得的積相加就是兩位數乘兩位數的積。
第六單元 面積
1、 面積:物體表面或封閉圖形的大小,就是它們的面積。
2、 常用的面積單位:平方厘米、平方分米、平方米等。
3、 邊長1厘米的正方形,面積是1平方厘米;
邊長1分米的正方形,面積是1平方分米;
邊長1米的正方形,面積是1平方米。
4、 1平方米=100平方分米; 1平方分米=100平方厘米;
1平方米=10000平方厘米;
5、測量土地的面積時,常常要用到更大的面積單位:公頃,平方千米
邊長是100米的正方形,面積是1公頃。
邊長是1千米的正方形,面積是1平方千米
6、 1平方千米=100公頃 1公頃=10000平方米;
7、 長方形的面積=長×寬;正方形的面積=邊長×邊長。
第七單元 小數的初步認識
1、 以米為單位的小數的含義:
(1)小數點左邊的數表示多少米。
(2)小數點右邊的數依次表示幾分米、幾厘米。
2、 以元為單位的小數的含義:
(1)幾元就在小數點的左邊寫幾。
(2)幾角就在小數點右邊第一位上寫幾,幾分就在小數點右邊第二位上寫幾,哪個數位上一個單位也沒有,就在那個數位上寫“0”占位,最后寫上單位名稱“元”。
3、 小數大小的比較方法:
(1)先比較小數點左邊的部分(整數部分),這部分數大的這個小數就大。
(2)如果整數部分大小相同,就看小數點右邊第一位上的數,這個數位上的數大這個小數就大。
(3)如果小數點右邊第一位上的數也相同,就看小數點右邊第二位上的數,以此類推。
4、 用豎式計算小數的加法(一位小數):
(1)兩個加數的相同數位一定要對齊(小數點對齊)。
(2)先將小數點右邊第一位上的數相加,滿十進一。
(3)和的小數點要和兩個加數的小數點對齊。
(4)再將小數點左邊的'數相加,這部分數按整數的加法來加。
5、 用豎式計算一位小數減法的方法:
(1)被減數和減數的相同數位要對齊(小數點對齊)。
(2)從小數點右邊第一位開始減起(從右到左),不夠減時從前一位退一當十再減。
(3)差的小數點要和被減數、減數的小數點對齊。
第八單元 解決問題
1、 分析題中的數量關系,明確先求什么,再求什么。
2、 每份個數×份數=總數(也就是求幾個幾是多少用乘法計算)。
總數÷每份個數=份數 總數÷份數=每份個數
3、 含有乘、除法的綜合算式從左往右計算。
4、 含有乘法(除法)、加法(減法)的綜合算式,先算乘(除)法再算加(減)法。
第九單元 數學廣角
1、 集合:在數學中,集合是指某一類事物組成的整體。
2、 等量代換:是指一個量用與它相等的量去代替。
3、 計算兩個隊的***,不能簡單地將兩個隊的人數相加,要將重復的人數從總數中減去。
中考數學知識點總結4
圓的初步認識
一、圓及圓的相關量的定義(28個)
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓**意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧。連接圓**意兩點的線段叫做弦。經過圓心的弦叫做直徑。
3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關圓的字母表示方法(7個)
圓--⊙ 半徑r 弧--⌒ 直徑d
扇形弧長/圓錐母線l 周長C 面積S三、有關圓的基本性質與定理(27個)
1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):
P在⊙O外,POP在⊙O上,PO=r;P在⊙O內,PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個點確定一個圓。
8.一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。
9.直線AB與圓O的位置關系(設OPAB于P,則PO是AB到圓心的距離):
AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點的直徑;經過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且Rr,圓心距為P):
外離P外切P=R+r;相交R-r
三、有關圓的計算公式
1.圓的周長C=2d 2.圓的面積S=s=3.扇形弧長l=nr/180
4.扇形面積S=n/360=rl/2 5.圓錐側面積S=rl
四、圓的方程
1.圓的標準方程
在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2
相關知識:圓的離心率e=0.在圓**意一點的曲率半徑都是r.
五、圓與直線的位置關系判斷
鏈接:圓與直線的位置關系(一.5)
平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:
如果b^2-4ac0,則圓與直線有2交點,即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切
如果b^2-4ac0,則圓與直線有0交點,即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,并且我們規定x1
當x=-C/Ax2時,直線與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1不在同一直線上的三點確定一個圓。
2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
1圓的兩條平行弦所夾的弧相等
3圓是以圓心為對稱中心的中心對稱圖形
4圓是定點的距離等于定長的點的集合
5圓的內部可以看作是圓心的距離小于半徑的點的集合
6圓的外部可以看作是圓心的距離大于半徑的點的集合
希望這篇20xx中考數學知識點匯總,可以幫助更好的迎接即將到來的考試!
中考數學知識點總結5
一、初中數學基本知識
㈠、數與代數
A、數與式:
1、有理數
有理數:①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等于乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數
無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AMAN=A(MN)
(AM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:
①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
20xx年中考數學基礎知識總結20xx年中考數學基礎知識總結
B、方程與不等式
1、方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△
2、不等式與不等式組
不等式:
①用符號〉,=,〈號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,AC>BC
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C
如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立;
二、函數
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:①若兩個變量X,間的關系式可以表示成=XB(B為常數,不等于0)的形式,則稱是X的一次函數。②當B=0時,稱是X的正比例函數。
一次函數的圖象:①把一個函數的自變量X與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數=X的圖象是經過原點的一條直線。③在一次函數中,當〈0,B〈O,則經234象限;當〈0,B〉0時,則經124象限;當〉0,B〈0時,則經134象限;當〉0,B〉0時,則經123象限。④當〉0時,的值隨X值的增大而增大,當X〈0時,的值隨X值的增大而減少。
三、空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
20xx年中考數學基礎知識總結建造師考試_建筑工程類工程師考試網
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
中考數學備考指導之數學知識口訣總結實用一篇(擴展5)
——數學知識點:口訣優選【八】份
數學知識點:口訣 1
一、數與代數
Ⅰ、數與式
1.有理數的加法、乘法運算
同號相加一邊倒,異號相加“大”減“小”;符號跟著大的跑,絕對值相等“零”正好。
同號得正異號負,一項為零積是零。【注】“大”減“小”是指絕對值的大小。
2.合并同類項
合并同類項,法則不能忘;只求系數代數和,字母、指數不變樣。
3.去、添括號法則
去括號、添括號,關鍵看符號;括號前面是正號,去、添括號不變號;
括號前面是負號,去、添括號都變號。
4.單項式運算
加、減、乘、除、乘(開)方,三級運算分得清;系數進行同級(運)算,指數運算降級(進)行。
5.分式混合運算法則
分式四則運算,順序乘除加減;乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先;分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結果要求最簡。
6.平方差公式
兩數和乘兩數差,等于兩數平方差;積化和差變兩項,完全平方不是它。
7.完全平方公式
首平方又末平方,二倍首末在**;和的平方加再加,先減后加差平方。
8.因式分解
一提二套三分組,十字相乘也上數;四種方法都不行,拆項添項去重組;重組無望試求根,
換元或者算余數;多種方法靈活選,連乘結果是基礎;同式相乘若出現,乘方表示要記住。
【注】一提(提公因式)二套(套公式)
9.二次三項式的因式分解
先想完全平方式,十字相乘是其次;兩種方法行不通,求根分解去嘗試。
10.比和比例
兩數相除也叫比,兩比相等叫比例;基本性質第一條,外項積等內項積;
前后項和比后項,組成比例叫合比;前后項差比后項,組成比例是分比;
兩項和比兩項差,比值相等合分比;前項和比后項和,比值不變叫等比;
商定變量成正比,積定變量成反比;判斷四數成比例,兩端積等中間積。
11.根式和無理式
表示方根代數式,都可稱其為根式;根式異于無理式,被開方式無限制;
無理式都是根式,區分它們有標志;被開方式有字母,才能稱為無理式。
12.最簡根式的條件
最簡根式三條件:號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。
數學知識點:口訣 2
解比例
外項積等內項積,列出方程并解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質,變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變量成正比,積定變量成反比。
正比例與反比例
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式
表示方根代數式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括號,移項合并同類項。
系數化1有講究,同乘除負要變向。
先去分母再括號,移項別忘要變號。
同類各項去合并,系數化1注意了。
同乘除**防礙,同乘除負也變號。
解一元一次不等式組
大于頭來小于尾,大小不一中間找。
**小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
**小小解集空。(小小**哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
a正開口它向上,大于零則取兩邊。
代數式若小于零,解集交點數之間。
方程若無實數根,口上大零解為全。
小于零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其后,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規配方法解一元二次方程
左未右已先分離,二系化1是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恒等式。
完全平方等常數,間接配方顯優勢
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點后連線,平移規律記心間。
左加右減括號內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點后連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
數學知識點:口訣 3
1、十幾乘十幾:
口訣:頭乘頭,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:個位相乘,不夠兩位數要用0占位。
2、頭相同,尾互補(尾相加等于10):
口訣:一個頭加1后,頭乘頭,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:個位相乘,不夠兩位數要用0占位。
3、第一個乘數互補,另一個乘數數字相同:
口訣:一個頭加1后,頭乘頭,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:個位相乘,不夠兩位數要用0占位。
4、幾十一乘幾十一:
口訣:頭乘頭,頭加頭,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意數:
口訣:首尾不動下落,中間之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分別在首尾
11×23125=254375
注:和滿十要進一。
6、十幾乘任意數:
口訣:第二乘數首位不動向下落,第一因數的個位乘以第二因數后面每一個數字,加下一位數,
再向下落。
例:13×326=?
解:13個位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和滿十要進一。
數學知識點:口訣 4
1.有理數的加法運算:同號相加一邊倒;異號相加大減小,符號跟著大的跑;絕對值相等零正好。【注】大減小是指絕對值的大小。
2.合并同類項:合并同類項,法則不能忘,只求系數和,字母、指數不變樣。
3.去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。
4.一元一次方程:已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。
5.恒等變換:兩個數字來相減,互換位置最常見,**只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
6.平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
7.完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放**;首尾括號帶平方,尾項符號隨**。
8.因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
9.代入口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小-中-大)
10.單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。
11.一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。
12.一元一次不等式組的解集:**取較大,小小取較小,小大,大小取中間,大小,小大無處找。
13.一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
14.分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。
15.分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。
16.最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。
17.特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。
18.象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。
19.平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。
20.對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
21.自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。
22.函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了。
23.一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。
24.二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
25.反比例函數圖像與性質口訣:反比例函數有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函函數減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。
26.巧記三角函數定義:初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的.廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
27.三角函數的增減性:正增余減
28.特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣123,321,三九二十七既可。
29.平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分跑不了,對角相等也有用,兩組對角才能成。
30.梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在△延長兩腰交一點,△中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
31.添加輔助線歌:輔助線,怎么添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
32.圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。
33.圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉比例,兩端各自找聯系。
34.正多邊形訣竅歌:份相等分割圓,n值必須大于三,依次連接各分點,內接正n邊形在眼前.
35.經過分點做切線,切線相交n個點.n個交點做頂點,外切正n邊形便出現.正n邊形很美觀,它有內接,外切圓,內接、外切都唯一,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點,如果n值為偶數,中心對稱很方便.正n邊形做計算,邊心距、半徑是關鍵,內切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單.
36.函數學習口決:正比例函數是直線,圖象一定過圓點,k的**是關鍵,決定直線的象限,負k經過二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經過三個限,兩點決定一條線,選定系數是關鍵。
37.反比例函數雙曲線,待定只需一個點,正k落在一三限,x增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線x、y的順序可交換。
38.二次函數拋物線,選定需要三個點,a的**開口判,c的大小y軸看,△的符號最簡便,x軸上數交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉,三種形式可變換,配方法作用最關鍵。
數學知識點:口訣 5
乘法表
1×1=1
1×2=22×2=4
1×3=32×3=63×3=9
1×4=42×4=83×4=124×4=16
1×5=52×5=103×5=154×5=205×5=25
1×6=62×6=123×6=184×6=245×6=306×6=36
1×7=72×7=143×7=214×7=285×7=356×7=427×7=49
1×8=82×8=163×8=244×8=325×8=406×8=487×8=568×8=64
1×9=92×9=183×9=274×9=365×9=456×9=547×9=638×9=729×9=81
口訣表
一一得一
一二得二二二得四
一三得三二三得六三三得九
一四得四二四得八三四十二四四十六
一五得五二五一十三五十**五二十五五二十五
一六得六二六十二三六十八四六***五六三十六六三十六
一七得七二七十四三七二十一四七二十八五****六七四十二七七四十九
一八得八二八十六三八***四八三十二五八四十六八四十八七八五十六八八六十四
一九得九二九十八三九二十七四九三十六五九四十五六九五十四七九六十三八九七十二九九八十一
數學知識點:口訣 6
高一數學解題技巧:巧用知識點解題口訣
一、《集合與函數》
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看**。
二、《立體幾何》
點線面三位一體,柱錐臺球為**。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
三、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者―一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
數學知識點:口訣 7
1.特殊三角函數值記憶:
首先記住30度、45度、60度的正弦值、余弦值的分母都是2,
正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
三角函數的增減性:正增余減
2.平行四邊形的判定:
要證平行四邊形,兩個條件才能行,
一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
3.梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現;
延長兩腰交一點,“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
4.添加輔助線歌:
輔助線,怎么添?找出規律是關鍵。
題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連;
三角形邊兩中點,連接則成中位線;
三角形中有中線,延長中線翻一番。
數學知識點:口訣 8
復數
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
高三數學復數知識點就為大家介紹到這里,希望對你有所幫助。
中考數學備考指導之數學知識口訣總結實用一篇(擴展6)
——高中數學知識口訣實用三篇
高中數學知識口訣 1
一、《集合與函數》
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看**。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的`證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關于二項式定理,**楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐臺球為**。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
高中數學知識口訣 2
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看**。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的`長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關于二項式定理,**楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐臺球為**。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
高中數學知識口訣 3
一、《集合與函數》
內容子交并補集,還有冪指對函數。性質奇偶與增減,觀察圖象最明顯。
復合函數式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無對數;
正切函數角不直,余切函數角不平;其余函數實數集,多種情況求交集。
兩個互為反函數,單調性質都相同;圖象互為軸對稱,Y=X是對稱軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來函數的值域。
冪函數性質易記,指數化既約分數;函數性質看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看**。
二、《三角函數》
三角函數是函數,象限符號坐標注。函數圖象單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字1,連結頂點三角形;向下三角平方和,倒數關系是對角,
變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集;
三、《不等式》
解不等式的途徑,利用函數的性質。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數形之間互轉化,幫助解答作用大。
證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數學歸納法。圖形函數來幫助,畫圖建模構造法。
四、《數列》
等差等比兩數列,通項公式N項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
五、《復數》
虛數單位i一出,數集擴大到復數。一個復數一對數,橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的'實質,有i多項式運算。i的正整數次慕,四個數值周期現。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質離不得,相等和模與共軛,
兩個不會為實數,比較大小要不得。復數實數很密切,須注意本質區別。
六、《排列、組合、二項式定理》
加法乘法兩原理,貫穿始終的法則。與序無關是組合,要求有序是排列。
兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。
不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。
關于二項式定理,**楊輝三角形。兩條性質兩公式,函數賦值變換式。
七、《立體幾何》
點線面三位一體,柱錐臺球為**。距離都從點出發,角度皆為線線成。
垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環現。
方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。
八、《平面解析幾何》
有向線段直線圓,橢圓雙曲拋物線,參數方程極坐標,數形結合稱典范。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。
兩種思想相輝映,化歸思想打前陣;都說待定系數法,實為方程組思想。
三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關系判。
四件工具是法寶,坐標思想參數好;平面幾何不能丟,旋轉變換復數求。
解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
中考數學備考指導之數學知識口訣總結實用一篇(擴展7)
——《圓》中考數學知識點實用一篇
《圓》中考數學知識點 1
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5.與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的.關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.三種位置及判定與性質:
2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:
內角的一半:(右圖)
(解Rt△OAM可求出相關元素,、等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、點的軌跡
六條基本軌跡
八、有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、基本圖形
十、重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
中考數學備考指導之數學知識口訣總結實用一篇(擴展8)
——中考備考之數學基本定理實用1篇
中考備考之數學基本定理 1
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個內角的和等于180°
18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20、推論3三角形的一個外角大于任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的`兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
中考數學備考指導之數學知識口訣總結實用一篇(擴展9)
——中考數學知識點背誦口訣匯總一篇
中考數學知識點背誦口訣 1
巧記三角函數定義:初中所學的三角函數有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:
正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數的增減性:正增余減。
特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現;延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規律是關鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關角,勿忘相互有關聯,圓周、圓心、弦切角,細找關系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉轉,四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關鍵,兩圓相切作公切,兩圓相交連公弦。有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。
合并同類項:合并同類項,法則不能忘,只求系數和,字母、指數不變樣。
去、添括號法則:去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。
恒等變換:兩個數字來相減,互換位置最常見,**只看其指數,奇數變號偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放**;首±尾括號帶平方,尾項符號隨**。
因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
“代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括弧(小―中―大)
單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行。
一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了。
一元一次不等式組的解集:**取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內不把分母含,冪指(數)根指(數)要互質,冪指比根指小一點。
特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+,-),四個象限分前后;X軸上y為0,x為0在Y軸。
象限角的平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的`橫坐標仍照舊。
對稱點坐標:對稱點坐標要記牢,相反數位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。
函數圖像的移動規律:若把一次函數解析式寫成y=k(x+0)+b、二次函數的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。
一次函數圖像與性質口訣:一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規律正相反;k的絕對值越大,線離橫軸就越遠。
二次函數圖像與性質口訣:二次函數拋物線,圖象對稱是關鍵;開口、頂點和交點,它們確定圖象現;開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關聯;頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現,橫標即為對稱軸,縱標函數最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
中考數學備考指導之數學知識口訣總結實用一篇(擴展10)
——初中數學知識點歸納總結口訣優選【一】份
初中數學知識點歸納總結口訣 1
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數的減法運算
減正等于加負,減負等于加正。
有理數的`乘法運算符號法則
同號得正異號負,一項為零積是零。
合并同類項
說起合并同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括號法則
去括號或添括號,關鍵要看連接號。
擴號前面是正號,去添括號不變號。
括號前面是負號,去添括號都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等于兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減后加差平方。
完全平方公式
首平方又末平方,二倍首末在**。
和的平方加再加,先減后加差平方。
解一元一次方程
先去分母再括號,移項變號要記牢。
同類各項去合并,系數化“1”還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括號,移項合并同類項。
系數化1還沒好,準確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐**。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上**號。
同正則**就負,異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】一提(提公因式)二*(*公式)
因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對癥下藥穩又準,連乘結果是基礎。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。